Synthesis of S-Alkyl Thiocarboxylates from Vinylsilanes and Chlorothiocarbonates

Ernst Schaumann* and Bernd Mergardt

Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Federal Republic of Germany

ipso-Substitution of the silyl group in vinylsilanes or cyclopropylsilane by Lewis acid activated *S*-ethyl chlorothiocarbonate gives thiocarboxylates.

Because of their activated carbonyl group, thiocarboxylic Sesters are interesting synthetic intermediates.¹ This is particularly true for α,β -unsaturated representatives.² Conventionally, these derivatives are prepared by C=C forming reactions or by CO-S bond formation.³ Based on organosilicon chemistry, we have now developed a synthesis of α,β unsaturated thiocarboxylates in which the C=C entity is linked to the ester functionality nicely complementing the existing methods.³ In the presence of Lewis acids, the reaction of vinylsilanes (1) with chlorothiocarbonate⁴ (2) gives the target molecules (3) in good yield (see Scheme and Table). The reaction is particularly clean starting from vinylsilane (1a) or (E)-1-phenyl-2-trimethylsilylethylene (1c) to yield the esters (3a)⁵ and (3c),⁶ \dagger respectively.

† ¹H N.m.r. (270 MHz, CDCl₃) δ 1.30 (t, *J* 7.7 Hz, 3 H, CH₃), 3.00 (q, *J* 7.7 Hz, 2 H, CH₂), 6.68 (d, *J* 16.2 Hz, 1 H, =CH), 7.33–7.50 (m, 5 H, arom.), and 7.58 (d, *J* 16.2 Hz, 1 H, =CH).

Scheme. Reagents: i and ii, CH₂Cl₂; Lewis acid and temperature in Table.

Use of 1-(trimethylsilyl)cyclohexene (1b) gives a mixture of $(3b)^*$ and isomer (4)[†] with the C=C bond in a non-conjugated position. This has a parallel in the reaction of acyl halides with vinylsilanes of type (1b).⁷

The reactive species formed from the thiocarbonate (2) appears to be electrophile (5; R = Et), in which the carbonyl entity is stabilized by a favoured hard/hard interaction with the Lewis acid.⁸ In line with this, the hard Lewis acid AlCl₃ is most efficient in the heterolysis of the CO–Cl bond in (2), whereas TiCl₄ gives a lower yield and MgBr₂ fails to catalyze the reaction (Table). In contrast, even with use of AlCl₃ and with the temperature at -78 °C, S-t-butyl, -hexyl, or -cyclohexyl thiocarbonates (2) give no substitution of silicon in (1), since the intermediate cations (5) immediately decompose to the corresponding alkyl halides and carbonyl sulphide.⁴ Similarly, the reaction of vinylsilanes (1) with chlorocarbonates fails to provide α,β -unsaturated esters under our conditions.

Table. Preparation of S-ethyl thiocart	poxylates (3), (4), and (7) (Scheme)
--	--------------------------------------

Silane	Lewis acid	Temp. (°C)	Product(s) (% yield) ^a
(1 a)	AlCl ₃	60	(3a) (62)
(1 a)	TiCl ₄	-60	(3a) (28)
(1 a)	MgBr ₂	-30	(3a)(0)
(1b)	AlCl ₃	- 70	(3b) + (4) (25%, 1:3.5)
(1b)	AlCl ₃	0	(3b) + (4) (25%, 1:1.5)
(1c)	AlCl ₃	- 30	(3c) (66)
(6)	AlCl ₃	42 ^b	(7) (43)
Isolated yield of pure products. b CH ₂ Cl ₂ , 2 days reflux.			

On the other hand, the approach can be extended to the synthesis of S-ethyl cyclopropanethiocarboxylate (7) from silylcyclopropane (6) \ddagger and thiocarbonate (2). In this case, more vigorous conditions are required (Table), but the reaction proceeds cleanly without opening of the three-membered ring.⁹ In comparison with the β -effect of silicon discussed in the reactions above, here edge-co-ordination of the electrophile to the cyclopropane seems to be involved.¹⁰

Experimental

CAUTION: Thioacrylates and chlorothiocarbonates are strong irritants and should be handled with care.

Typical Procedure using Vinylsilanes.-A suspension of freshly distilled chlorothiocarbonate (2) (34 ml, 300 mmol) and AlCl₃ (40 g, 300 mmol) in dry CH₂Cl₂ (200 ml) was stirred at -60 °C for 30 min. A solution of vinylsilane (1a) (46.3 ml, 300 mmol) in dry CH₂Cl₂ (50 ml) was then added dropwise, and the reaction mixture stirred at -60 °C for 1 h. After completion of the reaction, as indicated by t.l.c. [eluant, hexane-ethyl acetate (9:1), $R_{\rm F}$ (3a) = 0.61, detection u.v. and aq. KMnO₄], cold saturated aqueous NH4Cl (250 ml) was added, and the mixture twirled at room temperature for 1.5 h. The organic layer was separated, washed with saturated aqueous NH₄Cl, saturated aqueous NaHCO₃, brine, and water, dried (MgSO₄), and evaporated. The resulting material was distilled in vacuo (hydroquinone added) to give (3a) as a pale yellow liquid, b.p. 55-58 °C at 35 mmHg (Found: C, 51.7; H, 7.1; S, 27.6. C₅H₈OS requires C, 51.69; H, 6.94; S, 27.62%); v_{max} (film) 1 670 and 1 610 cm⁻¹; $\delta_{\rm H}(400 \ {\rm MHz}, {\rm CDCl}_3)$ 1.24 (t, J 7.2 Hz, 3 H, CH₃), 2.92 (q, J 7.2 Hz, 2 H, CH₂), 5.62 (dd, 1 H, AMX system), 6.18-6.37 (dq, 2 H, AMX system); δ_c (100.6 MHz, CDCl₃, DEPT) 14.8 (Me), 23.1 (CH₂), 126.0 (=CH₂), 135.2 (=CH), and 190.2 (C=O).

Synthesis of the Cyclopropanethiocarboxylate (7).—A suspension of silylcyclopropane (6) (7 ml, 50 mmol), chlorothiocarbonate (2) (5.2 ml, 50 mmol), and AlCl₃ (6.67 g, 50 mmol) in dry CH₂Cl₂ (50 ml) was stirred under reflux for 2 days. After the reaction was completed [t.l.c., eluant, hexane–ethyl acetate (9:1), R_F (7) = 0.52], work-up was carried out as detailed above. The residue was fractionated *in vacuo*, using an effective rotary band column (hydroquinone added), to give (7) as pale yellow oil, b.p. 75—79 °C at 35 mmHg; v_{max} (film) 3 060 and 1 670 cm⁻¹; δ_H (400 MHz, CDCl₃) 0.88 (m, 2 H, cyclopropyl), 1.09 (m, 2 H, cyclopropyl), 1.19 (t, *J* 7.5 Hz, 3 H, CH₃), 1.95 (m, 1 H, AA'BB'X system), and 2.82 (q, *J* 7.5 Hz, 2 H, CH₂); δ_C (67.93 MHz, CDCl₃, DEPT) δ 10.3 (CH₂), 14.7 (CH₃), 22.4 (CH), 23.0 (CH₂), and 198.8 (C=O).

^{* &}lt;sup>1</sup>H N.m.r. (400 MHz, CDCl₃) δ 6.92 (m, 1 H, =CH).

^{† &}lt;sup>1</sup>H N.m.r. (400 MHz, CDCl₃) δ 3.18 (m, 1 H, αCH), 5.70 (dq, 1 H, =CH), and 5.87 (m, 1 H, =CH).

 $[\]ddagger$ ^{13}C N.m.r. (67.93 MHz, CDCl₃, DEPT) δ -4.40 (CH), -2.58 (CH₃), and 1.04 (CH₂).

Acknowledgements

We thank the Fonds der Chemischen Industrie, Frankfurt, for financial support.

References

- K. C. Nicolaou, W. E. Barnette, G. P. Gasic, and R. L. Magolda, J. Am. Chem. Soc., 1977, 99, 7736; C. Gennari, M. G. Beretta, A. Bernardi, G. Moro, C. Scolastico, and R. Todeschini, Tetrahedron Lett., 1986, 27, 893; S. Masamune, Aldrichimica Acta, 1978, 11, 23.
- 2 C. Fehr and J. Galindo, J. Org. Chem., 1988, 53, 1828; S. Kobayashi, M. Tamura, and T. Mukaiyama, Chem. Lett., 1988, 91.
- Schaumann, B. Mergardt, and S. Fittkau, Synthesis, 1989 submitted for publication, and references cited therein; G. Keck, E. P. Boden, and S. A. Mabury, J. Org. Chem., 1985, 50, 709; J. R. Mohrig, S. C. Schultz, and G. Morin, J. Am. Chem. Soc., 1983, 105, 5150; H. J. Bestmann and H. Saalbaum, Bull. Soc. Chim. Belg., 1979, 88, 951; D. H. Lucast and J. Wemple, Tetrahedron Lett., 1977, 18, 1103; F.

Karrer and S. Farooq, German Offen 2452721 (1975) (Chem. Abstr., 1975, 83, 147310y).

- 4 G. A. Olah and P. Schilling, Liebigs Ann. Chem., 1972, 761, 77.
- 5 T. Otsu, K. Tsuda, and T. Fukumizu, *Makromol. Chem.*, 1968, **119**, 140; G. Braude, *J. Org. Chem.*, 1957, **22**, 1675.
- 6 T. Mukaiyama, T. Takeda, and K. Atsumi, *Chem. Lett.*, 1974, 187;
 L. B. Bos and J. F. Arens, *Rec. Trav. Chim. Pays-Bas*, 1963, 82, 157.
- 7 I. Fleming and A. Pearce, J. Chem. Soc., Perkin Trans 1, 1980, 2485.
- 8 F. G. Bordwell and G. D. Cooper, J. Am. Chem. Soc., 1952, 74, 1058; F. Bernardi, A. Mangini, N. D. Epiotis, J. R. Larson, and S. Shaik, J. Am. Chem. Soc., 1977, 99, 7465; M. I. Page, 'Chemistry of Enzyme Action,' Elsevier, Amsterdam, 1984, p. 253.
- 9 M. Grignon-Dubois, J. Dunogùs, and R. Calas, Synthesis, 1976, 737.
- 10 L. A. Paquette, Chem. Rev., 1986, 86, 733.

Received 10th February 1989

(Accepted 4th April 1989); Paper 9/01369E